
8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 1 of 7

Version: 7.0.14
Release date: 230813

Project structure (SDEVEN.62-PSTR)

Table of Content

Project structure (SDEVEN.62-PSTR)

Project basic backbone structure

doc_src directory

docs directory

pjm directory

setup directory

logs directory

static_portal directory

sysInit directory

<system_module_X> directory

Commons component

<project_root>/830-DEV/ directory

Example of project full directory structure

This procedure contains usual project structure and it is just a recommendation. The Project Manager will organize
the project in the best possible mode in order to to be relevant in specific project situations. A common practice is to
start with these recommendations and to add (or refine) elements that reflects project particular aspects.

Project basic backbone structure

First level of project backbone consists of:

830-DEV - here will take place all system "active" development

880-RLSE - here will be kept data for public releases - this directory is not be explained here, for details see
procedure 60-RELM

SDEVEN Software Development & Engineering Methodology

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/SDEVEN.60_RELM.html#release-directory-content-and-structure

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 2 of 7

All product system code is kept under 830-DEV directory. The objective of its structuring is to assure as much as
possible code reusability and its "after-release" maintainability. This directory contains:

<project root>/830-DEV/ directory go to section with following structure:

doc_src/ go to section

docs/ go to section

pjm/ go to section

setup/ go to section

logs/ go to section

static_portal/ go to section

sysInit/ go to section

<system_module_A>/ - directory dedicated for <system module "A"> go to section

<system_module_B>/ - directory dedicated for <system module "B"> go to section

... <another system module>/ ... go to section

Commons/ go to section

Each of these directories will be explained in next sections.

To avoid conflicts and misinterpretations at programming language level it is recommended that in FILES and
DIRECTORY NAMES to avoid characters space () and (-) and to replace them with underscores (_)

it is good practice that all directories (especially those that are created just because the deployed system will need
them) to contain an empty hidden file usual named .gitkeep that will prevent its deletion by some git products. Also
these directories usually are subject of .gitignore file

For a clear "picture" please refer the "Example of project full directory structure" section.

doc_src directory

the technical documentation:

110-SRE System Requirements

120-CPTS System Concepts

130-SKIT Sales Kit(s)

810-DSGN System Design

system manuals

euma

adma

Conventions

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 3 of 7

system manuals (adma & euma) will be assembled as deliverables in release packages for details see 60-RELM
procedure

docs directory

This directory will accommodate the FINAL (RELEASED) documentation static portal that accompanies the
developed system. This is part of what is known as "Help Center" of that system This is mandatory for products
from category "ENTERPRISE SYSTEMS".

this directory content is obtained from static_portal directory after tests passed and as preparation for a release
(here go to static_portal directory section)

this directory is subject to git repository as is part of a release

pjm directory

Here are kept project management items that could be necessary in software development 1, things like that:

project contract

project tests & acceptances procedures

deliveries content and schedule

... etc

the project management documents make subject of Project Management discipline and will not be explained here or in
other SDEVEN section

setup directory

The aim of this directory is to keep code to install the system by this understanding the code that:

create all directory structure required to accommodate and run developed system

create all OS level users, groups or other administrative OS "items"

install all required OS level dependencies and applications (for example a local particular database system, a
system application used to manage the network components, etc)

install the framework(s) components that are required to run developed system (for example JRE for Java
components, PHP Laravel, Python Flask, etc)

system manuals

remarks

project management documents

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/SDEVEN.60_RELM.html#release-directory-content-and-structure

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 4 of 7

configure OS installed components in corresponding directories (for example on Linux some changes in
directories /etc , /var , etc)

A general practice is to make setup components in usual OS scripting language (Bash, Power Shell, etc) but is not
mandatory to do like that. A good practice is to use a language that:

can assure enough independence of OS specific commands and "formats" (for example the directory separation
character, \ vs /)

can be executed on all known public OS-es (Linux, MacOS, Windows)

one of the "perfect" candidates is Python 3

logs directory

This directory will accommodate the application logs. It is complete optional and is recommended to follow the host
operating system "standards".

Regardless which directory will be used for application logs, a log rotate policy is desirable.

static_portal directory

This directory will accommodate the documentation static portal that accompanies the developed system. This is
part of what is known as "Help Center" of that system This is mandatory for products from category "ENTERPRISE
SYSTEMS".

the company practice is to use mkdocs to build this portal

this directory is used for testing and validation resulted portal - released portal is kept in docs/ directory

sysInit directory

The sysInit directory accommodates code that initialize all system modules. This system initialization routine
SHOULD BE THE CENTRALIZED ONE meaning:

each system module / component must have its initialization code (as described in "system module X")

the sysInit code centralize all modules initialization in correct order

The code of sysInit module should be called repeatedly without generate side effects except that determine
system initialization and loosing all sessions in work data. But repeating calls should all system data is correctly
flushed and persisted and no UNEXPECTED missing (of course others that "unsaved data") or other files,
configurations damage is happening.

setup components language

how to create documentation static portal

https://www.mkdocs.org/

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 5 of 7

<system_module_X> directory

The system must be designed following the next principles:

must be structured in "independent modules" (see the next explanation)

modules should interact between them ONLY:

using parameters and returns

using defined interfaces (as recommended in OOP guides)

using a external shared - common - data component

interactions or communication between modules that require global variables should use the Commons
component (see Common section)

should have their own initialization code callable from sysInit

should have their own README_moduleX.md file containing specific technical specs and info (will become
technical documentation)

A software module can be considered independent enough when it can be "transformed" into a distinct library with an
acceptable work around effort meaning without change or alter its functional code but only the required code to make it
separated "package or library" (ie, the code that define its library definition)

Commons component

This component is a specialized module used to replace direct usage of global variables. It usually is implemented
as a class object and take care of global variables by meaning:

assure their consistency such as they are critical regions

prevent circular references when using them (everybody import only Commons module)

Commons component (if is present) should have data initialized by each module that post any global data and in
sysInit module should be among the first created, if not the very first.

The Commons component has the name starting with uppercase especially to avoid confusions with commons name
which can be used in more other contexts being an usual and general term. So, the idea is to use in clear Commons
instead of commons and to potentially get some warnings at least in stating / initializing phases...

What means an independent module?

Commons component code-name

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 6 of 7

<project_root>/830-DEV/ directory

In the project root directory will be at least these files:

README.md which contains a kind of product data sheet with project information

project.toml which contains project information like:

name - product / system / project code-name / short-name as known in organization

description a short description of the project (just emphasizes the essence or "reason to ve" of product
because more detailed information is offered through README)

version is the product version (the product in that package !) and must conform all SDEVEN versioning
specifications

license type

... more information, usually this file being also required by PACKAGING AND DEPENDENCY MANAGEMENT
used solution ...

requirements.txt which contain product / system internal and libraries dependencies (just system level not
OS level)

Example of project full directory structure

Here is shown an example of project directory structure starting from a PROJECT-ROOT-DIRECTORY .

1. The reason that project management documents are kept "in development repository" is to be available for the whole team.
This is not mandatory and in special cases this directory can be moved out of development repository.

📁 <PROJECT-ROOT-DIRECTORY>

├── 📁 830-DEV/

│ ├── 📁 doc_src/

│ │ ├── 📁 110-SRE/

│ │ ├── 📁 120-CPTS/

│ │ ├── 📁 130-SKIT/

│ │ ├── 📁 810-DSGN/

│ │ └── 📄 other_project_docs...

│ ├── 📁 docs/

│ ├── 📁 pjm/ # organization specific project management and contractual docs ...

│ ├── 📁 setup/

│ ├── 📁 logs/ # optional

│ │ └── 📄 .gitkeep # empty hidden file to keep dir on git system

│ ├── 📁 static_portal/

│ ├── 📁 <sys_module_A...dir>/

│ ├── 📁 <sys_module_B...dir>/

│ ├── 📁 <sys_module_X...dir>/

│ ├── 📁 Commons/

│ ├── 📁 SysInit/

│ ├── 📄 project.toml

│ ├── 📄 README.md

│ ├── 📄 .gitignore

│ └── 📄 requirements.txt

└── 📁 880-RLSE/ # specific organization (see procedure 60-RELM) ...

file:///D:/_T8_PROJECTS/8000-2030%20SDEVEN%20Metodologia%20Software%20Development%20and%20Engineering/830-DEV/static_portal/SDEVEN.30_RENVER.html

8/13/23, 7:45 PM Project structure (62-PSTR) - SDEVEN Software Development & Engineering Methodology

Page 7 of 7

Last update: August 13, 2023

